关于冻结磁导率D方法
2017-06-27 by:CAE仿真在线 来源:互联网
关于冻结磁导率,不同版本之间的模型不要混用,否则容易引起通信错误。使用同一个版本进行操作,注意注意。
一般采用静态场计算电感,forlink(娄博)的关于冻结磁导率法还不是很了解。注意的问题:
1、A相轴线与D(Q)轴对齐
2、额定电流一般加到5%到10%,超过可能导致磁路饱和引起的误差
3、如果在matrix里面没有设置每槽导体数与并联支路数,计算出来的电感矩阵不但要乘以铁芯长度还要乘以N的平方,
交直轴电感,是同步电机分析和控制所必须的重要参数。关于如何计算,只要是电磁场有限元和电机方面的论坛,都有相关的讨论。遗憾的是大都停留在泛泛层面,鲜有具体阐述。
授人以鱼,不若授人以渔。本帖拟从电感矩阵变换的角度出发,从原理上对此问题讲清楚,并给出具体操作流程。
一、基本流程
1、参考方向(reference direction)
图1 电机参考方向的定义
2、冻结磁导率(frozen permeability)
对于线性材料来说,它的磁导率是一个常数,不存在冻结磁导率(frozen permeability)之说,也不存在饱和之说;但对于电机里面的铁磁材料而言,不同电流下,铁磁材料的磁导率是不同的,因此电感参数也不一样;实际计算电感时,要考虑电机额定运行工况时的饱和程度,计算出来的电感才有实际意义。这只有通过冻结磁导率的办法,才能实现。
冻结磁导率具体步骤如下:
(1)、计算额定工况饱和程度。此时的激励包括额定电枢绕组电流、额定励磁绕组电流,铁磁材料为非线性磁化曲线,方程为非线性方程;
(2)、在(1)中的非线性方程迭代求解结束后,计算各个单元的磁导率,并冻结各个单元的磁导率(frozen permeability),此时磁导率为常数;
(3)、去掉(1)中所加的所有激励,将电机铁磁材料的非线性磁化曲线更换为(2)中保存各个单元的磁导率,此时电机电机电感与电流无关;然后分别给每个绕组施加1A的电流,计算磁场,此时的方程为线性方程;
(4)、计算(3)中能量,再依据能量法计算电感。Ansoftmaxwell计算电感矩阵时,是会自动冻结磁导率和考虑饱和影响的,没必要手动冻结磁导率。当然我们也可以依照上述四步,手动冻结磁导率,然后计算电感,两种方法结果是完全一样的。
3、电流的加载(excitation)
采用静磁场计算,为了计算额定工况,电机应该施加额定电枢电流和额定励磁电流。
施加额定电枢电流时,需要施加对应于该转子位置时刻的三相电流瞬时值,这样才能与额定工况相符。
4、派克变换(park transformation)
采用静磁场,施加3中所述的额定励磁电流和额定电枢电流,计算出abc坐标系下的电感矩阵Labcf,取其中的Labc,然后按照图2对其进行派克变换,即可得到交直轴电感Ldq,这一步工作可以采用excel或matlab完成。其中θ为1中参考方向定义的电角度。转子位置角θ可为0~90度之间的任一角度。
图2 派克方程及其变换
二、有关说明:
1、本帖虽然以电励磁同步电机为例,但所述方法完全适用于永磁同步电机,爪极电机,盘式电机,感应子电机等同步电机系列。
2、静磁场计算电感,在assign matrix中可以直接指定匝数和并联支路数。因此若采用全模型,计算出来的电感只需要乘以电机铁心长度就是实际电感。为了减小计算量,常常采用周期模型,此时计算出来的电感除了乘以电机铁心长度外,还需要乘以周期性对称系数,才是实际电感。
3、由于采用二维静磁场,因此没能计及端部电感的影响。但端部电感一般占电机总电感的3%左右,影响很小。当然,更准确的计算可采用三维静磁场,基本原理与二维静磁场完全相同。
4、不建议采用瞬态场,理由是瞬态磁场需要做两次计算,一次是空载时的定子磁链,一次是负载时的定子磁链,由于瞬态场磁导率不能冻结,因此无法保证两次饱和程度相同,故而电感精度无法得到保证。
5、若需要计算电机带不同负载时的电感,可以将电机电流设置成变量,然后进行参数扫描。就可以得出交直轴电感随功率因数角变化时的曲线。
6、本帖所述方法与其他方法的优点在于,只需要一次静磁场计算即可同时完成交直轴电感的计算,避免了其他方法的两次或多次计算,减少了计算量。同时还可以考虑电机实际运行工况时的饱和程度。经与路算相比,本帖所述方法误差在5%左右,完全能满足工程需要。
相关标签搜索:关于冻结磁导率D方法 Maxwell电磁仿真培训 Maxwell培训课程 Maxwell培训班 Maxwell在线视频 Maxwell教程 Maxwell软件教程 Maxwell资料下载 电机设计仿真 Fluent、CFX流体分析 HFSS电磁分析 Ansys培训 Abaqus培训