离散元法分析理论

2016-08-29  by:CAE仿真在线  来源:互联网

离散元发展历程

  离散元方法(DEM)首次于19世纪70年代由CundallandStrack在《A discrete numerical model for granular assemblies》一文提出,并不断得到学者的关注和发展。离散元在我国起步比较晚,但是发展迅速,1986年第一届全国岩石力学数值计算及模型试验讨论会上,王泳嘉首次向我国岩石力学与工程界介绍了离散元法的基本原理及几个应用例子。

离散元基本原理

  离散元法是专门用来解决不连续介质问题的数值模拟方法。该方法把节理岩体视为由离散的岩块和岩块间的节理面所组成,允许岩块平移、转动和变形,而节理面可被压缩、分离或滑动。因此,岩体被看作一种不连续的离散介质。其内部可存在大位移、旋转和滑动乃至块体的分离,从而可以较真实地模拟节理岩体中的非线性大变形特征。离散元法的一般求解过程为:将求解空间离散为离散元单元阵,并根据实际问题用合理的连接元件将相邻两单元连接起来;单元间相对位移是基本变量,由力与相对位移的关系可得到两单元间法向和切向的作用力;对单元在各个方向上与其它单元间的作用力以及其它物理场对单元作用所引起的外力求合力和合力矩,根据牛顿运动第二定律可以求得单元的加速度;对其进行时间积分,进而得到单元的速度和位移。从而得到所有单元在任意时刻的速度、加速度、角速度、线位移和转角等物理量。

离散元应用领域

  离散元技术在岩土、矿冶、农业、食品、化工、制药和环境等领域有广泛地应用,可分为分选、凝聚、混合、装填和压制、推铲、储运、粉碎、爆破、流态化等过程。颗粒离散元法在上述领域均有不少应用:料仓卸料过程的模拟;堆积、装填和压制;颗粒混合过程的模拟。

相关计算机软件

  目前开发离散元商用程序最有名的公司要属由离散元思想首创者Cundall加盟的ITASCA国际工程咨询公司.该公司开发的二维UDEC(universal distinct element code)和三维3DEC(3-dimensional distinct elementcode)块体离散元程序,主要用于模拟节理岩石或离散块体岩石在准静或动载条件下力学过程及采矿过程的工程问题.该公司开发的PFC2D和PFC3D(particle flow code in 2/3 dimensions)则分别为基于二维圆盘单元和三维圆球单元的离散元程序.它主要用于模拟大量颗粒元的非线性相互作用下的总体流动和材料的混合,含破损累计导致的破裂、动态破坏和地震响应等问题.Thornton的研究组研制了GRANULE程序,可进行包括不同形状的干、湿颗粒结块的碰撞一破裂规律研究,离散本构关系的细观力学分析,料仓料斗卸料规律研究等.国内离散元软件的开发相对还比较落后,但随着离散元方法研究在国内的升温,也出现了用于土木工程设计的块体离散元分析系统2D—Block[oJ和三维离散单元法软件TRUDEC及应用,以及北京大学刘凯欣研究小组开发的基于二维圆盘单元和三维球单元为基础的SUPER-DEM离散元力学分析系统。

  最近,中国科学院非连续介质力学与工程灾害联合实验室与极道成然科技有限公司联合开发了国内最新的离散元大型商用软件GDEM,该软件基于中科院力学所非连续介质力学与工程灾害联合实验室开发的CDEM算法,将有限元与块体离散元进行有机结合,并利用GPU加速技术,可以高效的计算从连续到非连续整个过程。GDEM软件拥有完全独立的自主知识产权,代表了离散元的最高发展水平,让国人和世界站在了同一起跑线上。

参考文献:

  A GPU Accelerated Continuous-based Discrete Element Method for Elastodynamics Analysis.

  基于CDEM的高桩码头承载力数值模拟

  离散元法及其在岩土工程中的应用综述

  颗粒流的离散元法模拟及其进展

  离散元法研究的评述

 

 

 

 

离散元的历史

  离散元(discrete element method, distinct element method)是一种数值计算方法,主要用来计算大量颗粒在给定条件下如何运动。1971年Cundall提出此方法时采用ditinct element method是为了和连续介质力学中的finite element method相区别。后来用discrete element method取代了distinct element method,以反映系统是离散的之一本质特征。

  1971年Cundall提出适于岩石力学的离散元法, 1979年Cundall和Strack又提出适于土力学的离散元法,并推出二维圆盘(disc)程序BALL和三维圆球程序TRUBAL(后发展成商业软件PFC-2D/3D),形成较系统的模型与方法,被称为软颗粒模型;

离散元与分子动力学的比较

  从本质上来讲,离散元和分子动力学方法类似(molecular dynamics),以至于有些作者在文献中不加区别的使用MD和DEM两个名字。然而离散元和分子动力学相似性只体现在形式上的相似(颗粒和牛顿定理)。二者还是有很大差别,在于分子动力学计算原子如何在给定相互作用势下如何运动,而离散元计算的颗粒通常为微米及毫米量级。此外,离散元方法中需要考虑颗粒体在外力作用下的旋转运动,颗粒的形状,颗粒尺寸分布,以及颗粒之间填充气体,液体对颗粒材料宏观性能都有很大的影响。总之,即使计算模拟一个最简单的颗粒系统,单一尺寸的球形颗粒考虑摩擦作用下的运动问题都涉及到许多需要仔细考虑的细节,然而正如其他模拟方法一样,这些细节往往不会被作者在文章中出版,大多靠自己在实践中去不断领悟。

计算流程

  第一步:建立所需要的几何模型并产生颗粒。

  几何模型可以根据实际计算模型需要建立,颗粒产生通常为随机产生,及在给定的几何空间内随机产生所需要的颗粒。产生颗粒时需要实时监测新产生的颗粒和已有颗粒之间的位置关系,任意两颗粒之间不能有重叠,否则颗粒之间相互作用力可能很大而导致系统崩溃。所以如果几何模型尺寸,颗粒尺寸以及颗粒数目之间关系不合适,有可能导致颗粒产生失败。颗粒的初始速度需要根据模拟需要而给定。

  第二步:确定接触模型。

  接触模型是离散元计算的核心。所谓接触模型就是确定颗粒接触时的相互作用力。离散元计算中首先把相互作用力分解为法向力和切向力(法向指的是两接触颗粒中心之间的连线),所以接触模型一般包含法向相互作用和切向相互作用。

 

 

 

中文名称:离散元法英文名称:distinct element method
定义:由康德尔建立的应用于不连续岩体的数值求解方法。即将含不连续面的岩体看作若干块刚体组成,块体之间靠角点作用力维持平衡。角点接触力用弹簧和黏性元件描述,并服从牛顿第二定律。块体的位移和转动根据牛顿定律用动力松弛法按时步进行迭代求解。
应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);岩石力学(水利)(三级学科)

 

离散元法(distinct element method,dem)是由cundall[1]提出的1种处理非连续介质问题的数值模拟方法,其理论基础是结合不同本构关系的牛顿第二定律,采用动态松弛法求解方程.

  dem自问世以来,其主要应用领域集中在岩体工程和粉体(颗粒散体)工程.首先,在岩体计算力学方面,由于离散单元能更真实地表达节理岩体的几何特点,便于处理所有非线性变形和破坏都集中在节理面上的岩体破坏问题,被广泛应用于模拟边坡、滑坡和节理岩体地下水渗流等力学过程.其次,在粉体工程方面,颗粒离散元被广泛应用于粉体在复杂物理场作用下的复杂动力学行为的研究和多相混合材料介质或具有复杂结构的材料力学特性研究中.它涉及到粉末加工、研磨技术、混合搅拌等工业加工领域以及粮食等颗粒离散体的仓储和运输等生产实际领域.

  岩体工程中的dem与颗粒dem并无本质不同,但在接触处理以及一些概念的认识上有一定区别.例如,在节理岩体问题中,单元之间总是处于相互接触或存在接触—断开的过程,均可视为准静态情况,在此基础上引入动态松弛法[2]将该准静态问题化为动力学问题进行求解.动态松弛法要求选取合适的阻尼,使函数收敛于静态值.在颗粒体问题中,颗粒间并不一定总存在接触,颗粒体间的相互碰撞也表现为动态的过程,此时采用动态松弛法进行求解并非为了得到静态值,而是为了引入阻尼系数以提供耗能装置,达到最大程度的模拟效果.

  本文旨在对颗粒dem中阻尼等计算参数的选取方法进行阐述,有关dem原理的详细论述可参考文献[3].

  1阻尼系数选取

  颗粒dem中阻尼系数的选取可参考连续介质中阻尼的取法,引入工程中的黏性阻尼概念,采用rayleigh线性比例阻尼.rayleigh线性比例阻尼可以表示为

  常用的系统振动阻尼比ζ的确定方法有半功率法和对数减量法等.

  如前所述,rayleigh阻尼理论适用于连续介质系统,不完全适用于颗粒体这样的非连续介质系统,因为非连续介质系统随着单元之间的滑移或分离,其振型不确定,但阻尼却仍然存在,并可以用图1所示的物理模型解释.可以想象图中质量阻尼dm为把整个系统浸泡在黏性液体中,在物理意义上等价于用黏性活塞将颗粒单元与一不动点相连,使块体单元的绝对运动受到阻尼.刚度阻尼ds在物理意义上等价于用黏性活塞把两个接触块体相连,使颗粒单元之间的相对运动受到阻尼.

  当颗粒之间接触完全脱离,即不存在颗粒之间的相互接触时,阻尼不再存在,或者将此时的阻尼理解为颗粒在空气中受到的质量阻尼.所以,在颗粒dem中,实际存在一个变阻尼的概念,包含至少两套阻尼,即接触时的质量阻尼加刚度阻尼和无接触时的空气质量阻尼.

  对于连续介质来说,其振型、最小圆频率ωmin和最小临界阻尼系数ξmin等能够经过计算与实验得到.但是,对于非连续介质,由于其振型不确定,只能用试算的办法确定这些参数进而计算阻尼系数.颗粒dem中引入阻尼系数是为了提供耗能装置,并非为了得到准静态解,因此,阻尼系数的选取具有一定的灵活性,以满足最大程度模拟为原则.

  2刚度系数选取

  对刚度系数的考虑见图2,颗粒体a与颗粒体b存在两个角边接触,接触力分别为f1和f2,对于块体a有平衡方程

  3时步选取

  时步计算的理论基础是求解单自由度有阻尼弹性体系的中心差分格式下的临界时步δt.对于动力方程

  由推导可知,采用上述方法计算的时步能够达到足够小,可以保证颗粒之间的接触过程得到充分模拟,不会出现这个时步颗粒之间刚刚开始接触,下个时步颗粒间的接触就反弹开了的现象,保证了接触模拟的真实性.

  4算例

  下面给出采用本文作者编制的颗粒dem筒仓计算程序sisolv-2[4],对某大型筒仓的装、卸料过程进行模拟的算例.对原60 m直径、20 m仓高的筒仓按25∶3缩小建立模型,模型尺寸见图3.模拟中采用的计算参数见表1.

  5讨论

  颗粒dem看似简单,其实却很难.如何选取上述几个参数对于初学者是很棘手的问题.要得到正确的模拟结果,需要在深入理解某些相关概念的基础上通过试算得到阻尼等计算参数,只有选取合理的计算参数才能保证模拟的真实性.

 

 

Discrete element method

 

discrete element method (DEM), also called a distinct element method is any of family of numericalmethods for computing the motion of a large number of particles of micrometre-scale size and above. Though DEM is very closely related to molecular dynamics, the method is generally distinguished by its inclusion of rotational degrees-of-freedom as well as stateful contact and often complicated geometries (including polyhedra). With advances in computing power and numerical algorithms for nearest neighbor sorting, it has become possible to numerically simulate millions of particles on a single processor. Today DEM is becoming widely accepted as an effective method of addressing engineering problems in granular and discontinuous materials, especially in granular flows, powder mechanics, and rock mechanics.

Discrete element methods are relatively computationally intensive, which limits either the length of a simulation or the number of particles. Several DEM codes, as do molecular dynamics codes, take advantage of parallel processing capabilities (shared or distributed systems) to scale up the number of particles or length of the simulation. An alternative to treating all particles separately is to average the physics across many particles and thereby treat the material as a continuum. In the case of solid-like granular behavior as in soil mechanics, the continuum approach usually treats the material as elasticor elasto-plasticand models it with the finite element methodor a mesh free method. In the case of liquid-like or gas-like granular flow, the continuum approach may treat the material as a fluidand use computational fluid dynamics. Drawbacks to homogenizationof the granular scale physics, however, are well-documented and should be considered carefully before attempting to use a continuum approach.

 

The DEM family

The various branches of the DEM family are the distinct element methodproposed by Cundallin 1971, the generalized discrete element methodproposed by Hocking, Williamsand Mustoein 1985, the discontinuous deformation analysis(DDA) proposed by Shiin 1988 and the finite-discrete element method concurrently developed by several groups (e.g., Munjizaand Owen). The general method was originally developed by Cundall in 1971 to problems in rock mechanics. The theoretical basis of the method was established by Sir Isaac Newton in 1697. Williams, Hocking, and Mustoe in 1985 showed that DEM could be viewed as a generalized finite element method. Its application to geomechanics problems is described in the bookNumerical Modeling in Rock Mechanics, by Pande, G., Beer, G. and Williams, J.R.. The 1st, 2nd and 3rd International Conferences on Discrete Element Methods have been a common point for researchers to publish advances in the method and its applications. Journal articles reviewing the state of the art have been published by Williams, Bicanic, and Bobetet al. (see below). A comprehensive treatment of the combined Finite Element-Discrete Element Method is contained in the bookThe Combined Finite-Discrete Element Methodby Munjiza.

Applications

The fundamental assumption of the method is that the material consists of separate, discrete particles. These particles may have different shapes and properties. Some examples are:

  • liquidsand solutions, for instance of sugaror proteins;
  • bulk materialsin storage silos, like cereal;
  • granular matter, like sand;
  • powders, like toner.
  • Blocky or jointed rock masses

Typical industries using DEM are:

  • Agriculture and food handling
  • Chemical
  • Civil Engineering
  • Oil and gas
  • Mining
  • Mineral processing
  • Pharmaceutical
  • Powder metallurgy

Outline of the method

A DEM-simulation is started by first generating a model, which results in spatially orienting all particles and assigning an initial velocity. The forces which act on each particle are computed from the initial data and the relevant physical laws and contact models. Generally, a simulation consists of three parts: the initialization, explicit time-stepping, and post-processing. The time-stepping usually requires a nearest neighbor sorting step to reduce the number of possible contact pairs and decrease the computational requirements; this is often only performed periodically.

The following forces may have to be considered in macroscopic simulations:

  • friction, when two particles touch each other;
  • contact plasticity, or recoil, when two particles collide;
  • gravity, the force of attraction between particles due to their mass, which is only relevant in astronomical simulations.
  • attractive potentials, such as cohesion, adhesion, liquid bridging, electrostatic attraction. Note that, because of the overhead from determining nearest neighbor pairs, exact resolution of long-range, compared with particle size, forces can increase computational cost or require specialized algorithms to resolve these interactions.

On a molecular level, we may consider

  • the Coulomb force, the electrostaticattraction or repulsion of particles carrying electric charge;
  • Pauli repulsion, when two atoms approach each other closely;
  • van der Waals force.

All these forces are added up to find the total force acting on each particle. An integration methodis employed to compute the change in the position and the velocity of each particle during a certain time step from Newton's laws of motion. Then, the new positions are used to compute the forces during the next step, and this loopis repeated until the simulation ends.

Typical integration methods used in a discrete element method are:

  • the Verlet algorithm,
  • velocity Verlet,
  • symplectic integrators,
  • the leapfrog method.

Long-range forces

When long-range forces (typically gravity or the Coulomb force) are taken into account, then the interaction between each pair of particles needs to be computed. The number of interactions, and with it the cost of the computation,increases quadraticallywith the number of particles. This is not acceptable for simulations with large number of particles. A possible way to avoid this problem is to combine some particles, which are far away from the particle under consideration, into one pseudoparticle. Consider as an example the interaction between a star and a distant galaxy: The error arising from combining all the stars in the distant galaxy into one point mass is negligible. So-called tree algorithms are used to decide which particles can be combined into one pseudoparticle. These algorithms arrange all particles in a tree, a quadtreein the two-dimensional case and an octreein the three-dimensional case.

However, simulations in molecular dynamics divide the space in which the simulation take place into cells. Particles leaving through one side of a cell are simply inserted at the other side (periodic boundary conditions); the same goes for the forces. The force is no longer taken into account after the so-called cut-off distance (usually half the length of a cell), so that a particle is not influenced by the mirror image of the same particle in the other side of the cell. One can now increase the number of particles by simply copying the cells.

Algorithms to deal with long-range force include:

  • Barnes–Hut simulation,
  • the fast multipole method.

Combined finite-discrete element method

Following the work by Munjiza and Owen's earlier work, the combined-discrete element method has been further developed to various irregular and deformable particles in many applications including pharmaceutical tableting,[1]packaging and flow simulations,[2]and concrete and impact analysis,[3]and many other applications.

Advantages and limitations

Advantages

  • DEM can be used to simulate a wide variety of granular flow and rock mechanics situations. Several research groups have independently developed simulation software that agrees well with experimental findings in a wide range of engineering applications, including adhesive powders, granular flow, and jointed rock masses.
  • DEM allows a more detailed study of the micro-dynamics of powder flows than is often possible using physical experiments. For example, the force networks formed in a granular media can be visualized using DEM. Such measurements are nearly impossible in experiments with small and many particles.

Disadvantages

  • The maximum number of particles, and duration of a virtual simulation is limited by computational power. Typical flows contain billions of particles, but contemporary DEM simulations on large cluster computing resources have only recently been able to approach this scale for sufficiently long time (simulated time, not actual program execution time).

References

  1. ^ R W Lewis, D T Gethin, X-S Yang, R. Rowe, A Combined Finite-Discrete Element Method for Simulating Pharmaceutical Powder Tableting, Int. J. Num. Method in Engineering, 62, 853–869 (2005)
  2. ^ D T Gethin, X-S Yang and R W Lewis; A Two Dimensional Combined Discrete and Finite Element Scheme for Simulating the Flow and Compaction of Systems Comprising Irregular Particulates, Computer Methods in Applied Mechanics and Engineering, 195, 2006, 5552–5565 (2006)
  3. ^ I. M. May, Y. Chen, D. R. J. Owen, Y.T. Feng and P. J. Thiele: Reinforced concrete beams under drop-weight impact loads, Computers and Concrete, 3 (2–3): 79–90 (2006).

Bibliography

Book

  • Ante Munjiza,The Combined Finite-Discrete Element MethodWiley, 2004, ISBN 0-470-84199-0
  • Bicanic, Ninad,Discrete Element Methodsin Stein, de Borst, HughesEncyclopedia of Computational Mechanics, Vol. 1. Wiley, 2004. ISBN 0-470-84699-2.
  • Griebel, Knapek, Zumbusch, Caglar:Numerische Simulation in der Molekulardynamik. Springer, 2004. ISBN 3-540-41856-3.
  • Williams, J.R., Hocking, G., and Mustoe, G.G.W., “The Theoretical Basis of the Discrete Element Method,” NUMETA 1985, Numerical Methods of Engineering, Theory and Applications, A.A. Balkema, Rotterdam, January 1985
  • Pande, G., Beer, G. and Williams, J.R.,Numerical Modeling in Rock Mechanics, John Wiley and Sons, 1990.
  • Farhang Radjaï and Frédéric Dubois, "Discrete-element Modeling of Granular Materials", Wiley, 2011, ISBN 978-1-84821-260-2
  • Thorsten Pöschel and Thomas Schwager,Computational Granular Dynamics, models and algorithms. Springer, 2005. ISBN 3-540-21485-2.

Periodical

  • A. Bobet, A. Fakhimi, S. Johnson, J. Morris, F. Tonon, and M. Ronald Yeung (2009) "Numerical Models in Discontinuous Media: Review of Advances for Rock Mechanics Applications", J. Geotech. and Geoenvir. Engrg., 135 (11) pp. 1547–1561
  • P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies.Geotechnique,29:47–65, 1979.
  • Kawaguchi, T., Tanaka, T. and Tsuji, Y., Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models)Powder Technology,96(2):129–138, 1998.
  • Williams, J.R. and O’Connor, R.,Discrete Element Simulation and the Contact Problem, Archives of Computational Methods in Engineering, Vol. 6, 4, 279–304, 1999
  • Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science. 2007;62:3378-3396
  • Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: A review of mayor applications and findings. Chemical Engineering Science. 2008;63:5728-5770.

Proceedings

  • Shi, G, Discontinuous deformation analysis – A new numerical model for the statics and dynamics of deformable block structures, 16pp. In1st U.S. Conf. on Discrete Element Methods, Golden. CSM Press: Golden, CO, 1989.
  • Williams, J.R. and Pentland, A.P., "Superquadric and Modal Dynamics for Discrete Elements in Concurrent Design," National Science Foundation Sponsored 1st U.S. Conference of Discrete Element Methods, Golden, CO, October 19–20, 1989.
  • 2nd International Conference on Discrete Element Methods, Editors Williams, J.R. and Mustoe, G.G.W., IESL Press, 1992 ISBN 0-918062-88-8

Software

Open source and non-commercial software:

  • AscalaphMolecular dynamicswith fourth order symplectic integrator.
  • BALL & TRUBAL (1979–1980) distinct element method (FORTRAN code), originally written by P.Cundall and currently maintained by Colin Thornton.
  • dp3D(discrete powder 3D), DEM code oriented toward material science engineering applications (powder compaction, powder sintering, fracture of brittle materials...). Emphasis is put on the physics of the contact laws. dp3D is written in fortran 90 and heavily parallelised with OpenMP.
  • ESyS-ParticleESyS-Particle is a high-performance computing implementation of the Discrete Element Method released under the Open Software License v3.0. To date, development focus is on geoscientific applications including granular flow, rock breakage and earthquake nucleation. ESyS-Particle includes a Python scripting interface providing flexibility for simulation setup and real-time data analysis. The DEM computing engine is written in C++ and parallelised using MPI, permitting simulations of more than 1 million particles on clusters or high-end workstations.
  • LAMMPSis a very fast parallel open-source molecular dynamics package with GPU support also allowing DEM simulations. LAMMPS Website, Examples.
  • LIGGGHTSis a code based on LAMMPS with more DEM features such as wall import from CAD, a moving mesh feature and granular heat transfer. Further a coupling to CFD is available. LIGGGHTS Website
  • SDECSpherical Discrete Element Code.
  • LMGC90Open platform for modelling interaction problems between elements including multi-physics aspects based on an hybrid or extended FEM – DEM discretization, using various numerical strategies as MD or NSCD.
  • PasimodoPASIMODO is a program package for particle-based simulation methods. The main field of application is the simulation of granular media, such as sand, gravel, granulates in chemical engineering and others. Moreover it can be used for the simulation of many other Lagrangian methods, e.g. fluid simulation with Smoothed-Particle-Hydrodynamics.
  • YadeYet Another Dynamic Engine (historically related to SDEC), modular and extensible toolkit of DEM algorithms written in c++. Tight integration with Python gives flexibility to simulation description, real-time control and post-processing, and allows introspection of all internal data. Can run in parallel on shared-memory machines using OpenMP.
  • MechSysAlthough it is initially a package dedicated to the FEM method, it also contains a DEM module. It uses both spherical elements and spheropolyhedra to model collision of particles with general shapes. Both elastic and cohesive forces are included to model damage and fracture processes. Parallelization is achieved mostly by the new std::thread library of the new C++ standard. There is also a module dealing with the coupling between DEM and LBM still under development.

Commercially available DEM software packages include PFC3D, EDEM and Passage/DEM:

  • Bulk Flow Analyst (Applied DEM)General-purpose 3D DEM tool for mechanical engineering applications. Imports many types of 3D modelling files (including DXF, IGES, and STEP) and integrates with AutoCAD and SolidWorks as well as providing its own 3D interface.
  • Chute Analyst (Overland Conveyor Company)3D DEM tool for transfer chute engineering applications. Imports many types of 3D modelling files (including DXF, IGES, and STEP) and integrates with AutoCAD and SolidWorks as well as providing its own 3D interface.
  • Chute Maven (Hustrulid Technologies Inc.)Spherical Discrete Element Modeling in 3 Dimensions. Directly reads in AutoCad dxf files and interfaces with SolidWorks.
  • EDEM (DEM Solutions Ltd.)General-purpose DEM simulation with CAD import of particle and machine geometry, GUI-based model set-up, extensive post-processing tools, progammable API, couples with CFD, FEA and MBD software.
  • ELFEN
  • GROMOS 96
  • MIMESa variety of particle shapes can be used in 2D
  • PASSAGE/DEM(PASSAGE/DEM Software is for predicting the flow particles under a wide variety of forces.)
  • PFC (2D & 3D)Particle Flow Code.
  • SimPARTIXDEM and SPH simulation package from Fraunhofer IWM
  • StarCCM+Engineering analysis suite for solving problems involving flow (of fluids or solids), heat transfer and stress.
  • UDECand 3DECTwo- and three-dimensional simulation of the response of discontinuous media (such as jointed rock) that is subject to either static or dynamic loading.
  • DEMpackDiscrete / finite element simulation software in 2D and 3D, user interface based on GiD.
  • MFIX

See also

  • Movable Cellular Automata
  • Finite element method
Retrieved from "http://en.wikipedia.org/w/index.php?title=Discrete_element_method&oldid=492539886"

 

 

 

http://wenku.baidu.com/view/678738d380eb6294dd886c90.html

http://wenku.baidu.com/view/112dbf0e76c66137ee0619da.html?from=rec&pos=3&weight=45&lastweight=29&count=5

http://wenku.baidu.com/view/e38ca5d5360cba1aa811dafb.html?from=rec&pos=1&weight=16&lastweight=10&count=5

离散元方法与有限元方法的比较http://www.docin.com/p-99509567.html


开放分享:优质有限元技术文章,助你自学成才

相关标签搜索:离散元法分析理论 Fluent培训 Fluent流体培训 Fluent软件培训 fluent技术教程 fluent在线视频教程 fluent资料下载 fluent分析理论 fluent化学反应 fluent软件下载 UDF编程代做 Fluent、CFX流体分析 HFSS电磁分析 

编辑
在线报名:
  • 客服在线请直接联系我们的客服,您也可以通过下面的方式进行在线报名,我们会及时给您回复电话,谢谢!
验证码

全国服务热线

1358-032-9919

广州公司:
广州市环市中路306号金鹰大厦3800
电话:13580329919
          135-8032-9919
培训QQ咨询:点击咨询 点击咨询
项目QQ咨询:点击咨询
email:kf@1cae.com