厚壁圆筒弹塑性分析
2016-12-21 by:CAE仿真在线 来源:互联网
材料弹塑性
大多数工程材料(如钢材、钢筋混凝土)在加载变形过程中都存在线弹性阶段、屈服阶段和强化阶段(见下图)。随着载荷的增加,结构上应力大的点首先达到屈服强度,发生屈服而使结构进入弹塑性状态。这时虽然部分材料已进入塑性状态,但相当大部分仍处于弹性范围,因而结构仍可继续承载,直至塑性部分进一步扩展而发生崩塌。
2
例子
如图所示钢制厚壁圆筒,其内径r1=50mm,外径r2=100mm,作用在内孔上的自增强压力p=375MPa,工作压力p1=250MPa。材料屈服极限σ=500MPa。计算自增强处理后厚壁圆筒的承载能力。(参考文献:徐一凡.考虑材料强化效应的自增强厚壁圆筒应力分析[J].化工设备设计.1991(4):8-12)
3
理论解
根据弹塑性力学理论,由von Mises屈服条件,弹塑性区分界面半径rc可由下式计算得到:
代入各参数得rc=0.08m
加载时,厚壁圆筒应力分布为:
将各参数代入上式,可得:
卸载后,厚壁圆筒内残余应力分布为:
将各参数代入上式,可得:
加载和卸载时,圆筒沿壁厚方向应力分布如下:
ANSYS APDL分析
定义材料弹塑性,采用双线性随动强化模型。例子简化为平面应变问题,根据对称性,取圆筒四分之一并施加垂直于对称面的约束,指定载荷步数为3,分别模拟自增强、卸载和施加工作载荷三个过程。
计算得到自增强、卸载后的等效应力云图如下:
以内外径的壁厚为路径提取应力分布结果如下:
ANSYS Workbench分析
定义材料弹塑性,采用双线性随动强化模型。例子简化为平面应变问题,根据对称性,取圆筒四分之一并施加垂直于对称面的约束,指定载荷步数为3,分别模拟自增强、卸载和施加工作载荷三个过程。
计算得到自增强、卸载后的等效应力云图如下:
以内外径的壁厚为路径提取应力分布结果如下:
最后提取出不同载荷下等效应力分布如下:
从图中可以看出,当厚壁圆筒承载工作载荷时,内壁处的总应力有所下降,外壁处的总应力有所上升,从而提高圆筒初始屈服压力,更好地利用材料(了解压力容器的读者应会知道,该现象称为材料的自增强效应)。
结果对比
误差范围内,apdl和wb精度均满足需求。
附录(命令流)
/CLEAR
/PREP7
ET, 1, 183,,,2
MP, EX, 1, 2E11
MP, PRXY, 1,0 .3
TB, BKIN, 1, 1
TBTEMP, 0
TBDATA, 1, 500E6, 0
PCIRC, 0.1, 0.05, 0, 90
ESIZE, 0.003
MSHKEY, 1
MSHAPE, 0
AMESH, ALL
FINISH
/SOLU
DL, 4,,UY
DL, 2,,UX
AUTOTS, ON
DELTIM, 0.2, 0.1, 0.3
KBC, 0
TIME, 1
SFL, 3, PRES, 375E6
LSWRITE
TIME, 2
SFL, 3, PRES, 0
LSWRITE
TIME, 3
SFL, 3, PRES, 250E6
LSWRITE
LSSOLVE, 1, 3
FINISH
/POST1
RSYS, 1
SET, 1
PLNSOL, S, EQV
FINISH
相关标签搜索:厚壁圆筒弹塑性分析 Ansys有限元培训 Ansys workbench培训 ansys视频教程 ansys workbench教程 ansys APDL经典教程 ansys资料下载 ansys技术咨询 ansys基础知识 ansys代做 Fluent、CFX流体分析 HFSS电磁分析 Abaqus培训