网格大小对计算精度的影响及应力集中时结果的可信性
2017-02-06 by:CAE仿真在线 来源:互联网
有限元分析一定可以得到问题的精确解吗?
理论上可以证明,如果插值函数使用了“协调和完整的位移函数”,则当网格尺寸逐渐减小而单元数量增加时,解就会单调收敛。
而且,当单元数目增加时,得到的刚度会降低,并收敛于真实刚度;这就意味着,当单元增加时,得到的位移增加,而收敛于精确位移解。其图形如下:
这里所说的“协调和完整位移函数”,是指:
1.近似函数式一般是多项式。
2.近似函数在单元内要保持连续。
3.近似函数应提供单元间的连续性,包括离散单元每一个节点所有自由度都应该是连续的,二维单元和三维单元沿着公共边界线和公共面必须是连续的。
既能够保证单元内的连续,又能够保证单元间的连续的形函数称为协调函数。
4.近似函数应考虑刚体位移和单元内的常应变状态。即有常数项保证刚体运动(无应变的运动),而有一次项保证有常应变状态发生。这是形函数的完整性问题。
例如,对于一维单元而言,若取形函数
则同时满足上面四个条件,称为协调且完整的位移函数。
一般来说,我们所用的单元使用的位移函数都满足上述四个条件,所以从理论上来说,只要网格加密,就可以收敛于真实解。
为了验证上述理论的真实性,我们选用了一个材料力学中的例子来做仿真。
该例子如下
使用材料力学的理论进行求解,简要过程如下
使用ANSYS进行分析,使用BEAM188单元,首先创建如图所示的几何模型
然后分别对各段直线加密网格划分,得到的结果如下
上表中,第一列是划分的单元数,第二列是最大的压应力,第三列是最大的拉应力。可以看到,随着单元数目的增加,最大拉伸,压缩应力的绝对值都在增加。
从材料力学得到的精确解,最大的压应力是-46.2MPa, 最大的拉应力是28.8MPa。这样,当单元数增加到64个时,压应力的误差是(46.2-45.7)/46.2 =1.1%; 拉应力的精度是(28.8-28.6)/28.8=0.7%.此时精度已经相当高了。
可以明显的看出,随着单元数目的增加,应力解的确是在逐渐逼近真实解。从这个方面来说,加密网格的确是提高计算精度的有效方法。
这也意味着,我们在有限元仿真中,如果要得到精确的结果,必须不断细分网格,直到结果收敛。否则,我们的得到结果就是不可信的。
那么,对于任意的几何模型,网格细分就一定能够得到真实解吗?这是每一个CAE分析工程师都关注的问题。
如果结构中没有应力集中,答案是肯定的。
如果结构中存在应力集中,则结果未必会收敛。
为了说明这一点,我们选取了一个平面应力问题。它是一个角支座,其图形及尺寸如下。在角支座上钻了两个孔,现在我们固定左上边的孔,而在右下方孔的第四象限半圆上施加压力。并通过不断的加密网格来考虑计算结果的可信性。
生成的有限元模型如下
固定左上边的孔,并对右下方孔施加右下方向的压力,当单元尺寸取5mm时候,应力云图如下
可见,此时最大应力发生在拐角处,是34.383MPa
单元尺寸全局细分到3mm,结果是
最大应力是44.44MPa
单元尺寸全局细分到1mm,结果是
最大应力是74.004MPa
单元尺寸全局细分到0.4mm,结果是
最大应力是112.873MPa
可见,结果并没有收敛的趋势。
如果我们进一步细分网格,会发现数据无限增大,不会收敛。
实际上,理论证明,在该拐角处如果是直角,而没有倒圆角的话,应力集中系数会趋向无穷大,所以在实践设计中绝对禁止出现这种直角。
这也意味着,如果我们在有限元分析前进行模型简化时,绝不可轻易将一些倒角随便删除,否则会出现奇怪的结果。
相关标签搜索:网格大小对计算精度的影响及应力集中时结果的可信性 Ansys有限元培训 Ansys workbench培训 ansys视频教程 ansys workbench教程 ansys APDL经典教程 ansys资料下载 ansys技术咨询 ansys基础知识 ansys代做 Fluent、CFX流体分析 HFSS电磁分析 Abaqus培训