【技术篇】Ansys稳态传热分析

2017-04-01  by:CAE仿真在线  来源:互联网


稳态传热的定义

稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。

稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度、热梯度、热流率、热流密度等参数

热分析的单元

热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种:

线性:

LINK32 两维二节点热传导单元

LINK33 三维二节点热传导单元

LINK34 二节点热对流单元

LINK31 二节点热辐射单元

二维实体:

PLANE55 四节点四边形单元

PLANE77 八节点四边形单元

PLANE35 三节点三角形单元

PLANE75 四节点轴对称单元

PLANE78 八节点轴对称单元

三维实体:

SOLID87 六节点四面体单元

SOLID70 八节点六面体单元

SOLID90 二十节点六面体单元

壳 SHELL57 四节点

点 MASS71

ANSYS稳态热分析的基本过程

ANSYS热分析可分为三个步骤:

  • 前处理:建模

  • 求解:施加载荷计算

  • 后处理:查看结果

一建模

①确定jobname、title、unit;

②进入PREP7前处理,定义单元类型,设定单元选项;

③定义单元实常数;

④定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;

⑤创建几何模型并划分网格。

二施加载荷计算

①定义分析类型

如果进行新的热分析:

Command: ANTYPE, STATIC, NEW

GUI:Main menu>Solution>-AnalysisType->New Analysis>Steady-state

如果继续上一次分析,比如增加边界条件等:

Command: ANTYPE, STATIC, REST

GUI: Main menu>Solution>Analysis Type->Restart

【技术篇】Ansys稳态传热分析ansys分析案例图片1

②施加载荷

可以直接在实体模型或单元模型上施加五种载荷(边界条件) :

a.恒定的温度

通常作为自由度约束施加于温度已知的边界上。

Command Family: D

GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature

b.热流率

热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。

注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。

Command Family: F

GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Flow

c.对流

对流边界条件作为面载施加于实体的外表面,计算与流体的热交换,它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流。

Command Family: SF

GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Convection

d.热流密度

热流密度也是一种面载。当通过单位面积的热流率已知或通过FLOTRAN CFD计算得到时,可以在模型相应的外表面施加热流密度。如果输入的值为正,代表热流流入单元。热流密度也仅适用于实体和壳单元。热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载进行计算。

Command Family: F

GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Flux

e.生热率

生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热。它的单位是单位体积的热流率。

Command Family: BF

GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Generat

【技术篇】Ansys稳态传热分析ansys分析案例图片1

③确定载荷步选项

对于一个热分析,可以确定普通选项、非线性选项以及输出控制。

a.普通选项

  • 时间选项:虽然对于稳态热分析,时间选项并没有实际的物理意义,但它提供了一个方便的设置载荷步和载荷子步的方法。

Command: TIME

GUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps

  • 每载荷步中子步的数量或时间步大小:对于非线性分析,每一载荷步需要多个子步。

Command: NSUBST

GUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time and Substps

Command: DELTIM

GUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time-Time Step

  • 递进或阶越选项:如果定义阶越(stepped)选项,载荷值在这个载荷步内保持不变;如果为递进(ramped)选项,则载荷值由上一载荷步值到本载荷步值随每一子步线性变化。

Command: KBC

GUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps

b.非线性选项

  • 迭代次数:本选项设置每一子步允许的最多的迭代次数。默认值为25,对大数热分析问题足够。

Command: NEQIT

GUI: Main Menu>Solution>-Load Step Opts-Nolinear>Equilibrium Iter

  • 自动时间步长: 对于非线性问题,可以自动设定子步间载荷的增长,保证求解的稳定性和准确性。

Command: AUTOTS

GUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps

  • 收敛误差:可根据温度、热流率等检验热分析的收敛性。

Command: CNVTOL

GUI: Main Menu>Solution>-Load Step Opts-Nolinear>Convergence Crit

  • 求解结束选项:如果在规定的迭代次数内,达不到收敛,ANSYS可以停止求解或到下一载荷步继续求解。

Command: NCNV

GUI: Main Menu>Solution>-Load Step Opts-Nolinear>Criteria to Stop

  • 线性搜索:设置本选项可使ANSYS用Newton-Raphson方法进行线性搜索。

Command: LNSRCH

GUI: Main Menu>Solution>-Load Step Opts-Nolinear>Line Search

  • 预测矫正:本选项可激活每一子步第一次迭代对自由度求解的预测矫正。

Command: PRED

GUI: Main Menu>Solution>-Load Step Opts-Nolinear>Predictor

c.输出控制

  • 控制打印输出:本选项可将任何结果数据输出到*.out 文件中。

Command: OUTPR

GUI: Main Menu>Solution>-Load Step Opts-Output Ctrls>Solu Printout

  • 控制结果文件:控制*.rth的内容。

Command: OUTRES

GUI: Main Menu>Solution>-Load Step Opts-Output Ctrls>DB/Results File

【技术篇】Ansys稳态传热分析ansys分析案例图片1

④确定分析选项

a.Newton-Raphson选项(仅对非线性分析有用)

Command: NROPT

GUI: Main Menu>Solution>Analysis Options

b.选择求解器:可选择如下求解器中一个进行求解:

  • Frontal solver(默认)

  • Jacobi Conjugate Gradient(JCG) solver

  • JCG out-of-memory solver

  • Incomplete Cholesky Conjugate Gradient(ICCG) solver

  • Pre-Conditioned Conjugate Gradient Solver(PCG)

  • Iterative(automatic solver selection option)

Command: EQSLV

GUI: Main Menu>Solution>Analysis Options

注意:热分析可选用Iterative选项进行快速求解,但如下情况除外:

  • 热分析包含SURF19或SURF22或超单元;

  • 热辐射分析;

  • 相变分析

  • 需要restart an analysis

c.确定绝对零度:在进行热辐射分析时,要将目前的温度值换算为绝对温度。如果使用的温度单位是摄氏度,此值应设定为273;如果使用的是华氏度,则为460。

Command: TOFFST

GUI: Main Menu>Solution>Analysis Options

【技术篇】Ansys稳态传热分析ansys分析案例图片1

⑤保存模型: 点击ANSYS工具条SAVE_DB。

⑥求解

Command: SOLVE

GUI: Main Menu>Solution>Current LS

三后处理

ANSYS将热分析的结果写入*.rth文件中,它包含如下数据:

基本数据:

  • 节点温度

导出数据:

  • 节点及单元的热流密度

  • 节点及单元的热梯度

  • 单元热流率

  • 节点的反作用热流率

  • 其它

对于稳态热分析,可以使用POST1进行后处理,关于后处理的完整描述,可参阅《ANSYS Basic Analysis Procedures Guide》。

  • 进入POST1后,读入载荷步和子步:

Command: SET

GUI: Main Menu>General Postproc>-Read Results-By Load Step

可以通过如下三种方式查看结果:

  • 彩色云图显示

Command: PLNSOL, PLESOL, PLETAB等

GUI: Main Menu>General Postproc>Plot Results>Nodal Solu, Element Solu, Elem Table

  • 矢量图显示

Command: PLVECT

GUI: Main Menu>General Postproc>Plot Results>Pre-defined or Userdefined

  • 列表显示

Command: PRNSOL, PRESOL, PRRSOL等

GUI: Main Menu>General Postproc>List Results>Nodal Solu, Element Solu, Reaction Solu

实例1:

某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。

几何参数:

  • 筒外径 30 feet

  • 总壁厚 2 inch

  • 不锈钢层壁厚 0.75 inch

  • 玻纤层壁厚 1 inch

  • 铝层壁厚 0.25 inch

  • 筒长 200 feet

导热系数

  • 不锈钢 8.27 BTU/hr.ft.oF

  • 玻纤 0.028 BTU/hr.ft.oF

  • 铝 117.4 BTU/hr.ft.oF

边界条件

空气温度 70oF

海水温度 44.5oF

空气对流系数 2.5 BTU/hr.ft2.oF

海水对流系数 80 BTU/hr.ft2.oF

沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。


【技术篇】Ansys稳态传热分析ansys分析图片5

以下分别列出log文件和菜单文件。

菜单操作:

1.Utility Menu>File>change jobename, 输入Steady1;

2.Utility Menu>File>change title,输入Steady-state thermal analysis of submarine;

3.在命令行输入:/units, BFT;

4.Main Menu: Preprocessor;

5.Main Menu: Preprocessor>Element Type>Add/Edit/Delete,选择PLANE55;

6.Main Menu: Preprocessor>Material Prop>-Constant-Isotropic,默认材料编号为1,在KXX框中输入8.27,选择APPLY,输入材料编号为2,在KXX框中输入0.028,选择APPLY,输入材料编号为3,在KXX框中输入117.4;

7.Main Menu: Preprocessor>-Modeling->Create>-Areas-Circle>By Dimensions ,在RAD1中输入15,在RAD2中输入15-(.75/12),在THERA1中输入-0.5,在THERA2中输入0.5,选择APPLY,在RAD1中输入15-(.75/12),在RAD2中输入15-(1.75/12),选择APPLY,在RAD1中输入15-(1.75/12),在RAD2中输入15-2/12,选择OK;

8.Main Menu: Preprocessor>-Modeling->Operate>-Booleane->Glue>Area,选择PICK ALL;

9.Main Menu: Preprocessor>-Meshing-Size Contrls>-Lines-Picked Lines,选择不锈钢层短边,在NDIV框中输入4,选择APPLY,选择玻璃纤维层的短边,在NDIV框中输入5,选择APPLY,选择铝层的短边,在NDIV框中输入2,选择APPLY,选择四个长边,在NDIV中输入16;

10.Main Menu: Preprocessor>-Attributes-Define>Picked Area,选择不锈钢层,在MAT框中输入1,选择APPLY,选择玻璃纤维层,在MAT框中输入2,选择APPLY,选择铝层,在MAT框中输入3,选择OK;

11.Main Menu: Preprocessor>-Meshing-Mesh>-Areas-Mapped>3 or 4 sided,选择PICK ALL;

12.Main Menu: Solution>-Loads-Apply>-Thermal-Convection>On lines,选择不锈钢外壁,在VALI框中输入80,在VAL2I框中输入44.5,选择APPLY,选择铝层内壁,在VALI框中输入2.5,在VAL2I框中输入70,选择OK;

13.Main Menu: Solution>-Solve-Current LS;

14.Main Menu: General Postproc>Plot Results>-Contour Plot-Nodal Solu,选择Temperature。

实例2

一圆筒形的罐有一接管,罐外径为3英尺,壁厚为0.2英尺,接管外径为0.5英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。如图所示:

【技术篇】Ansys稳态传热分析ansys分析图片6

罐内流体温度为华氏450度,与罐壁的对流换热系数年为250BUT/hr-ft2-oF,接管内流体的温度为华氏100度,与管壁的对流换热系数随管壁温度而变。接管与罐为同一种材料,它的热物理性能如下表所示:

【技术篇】Ansys稳态传热分析ansys分析图片7


开放分享:优质有限元技术文章,助你自学成才

相关标签搜索:【技术篇】Ansys稳态传热分析 Ansys有限元培训 Ansys workbench培训 ansys视频教程 ansys workbench教程 ansys APDL经典教程 ansys资料下载 ansys技术咨询 ansys基础知识 ansys代做 Fluent、CFX流体分析 HFSS电磁分析 Abaqus培训 

编辑
在线报名:
  • 客服在线请直接联系我们的客服,您也可以通过下面的方式进行在线报名,我们会及时给您回复电话,谢谢!
验证码

全国服务热线

1358-032-9919

广州公司:
广州市环市中路306号金鹰大厦3800
电话:13580329919
          135-8032-9919
培训QQ咨询:点击咨询 点击咨询
项目QQ咨询:点击咨询
email:kf@1cae.com